👤

Se consideră matricea [tex]$A(a)=\left(\begin{array}{ll}2 & a \\ 0 & 2\end{array}\right)$[/tex], unde [tex]$a$[/tex] este număr real.

5p 1. Arătați că [tex]$\operatorname{det}(A(a))=4$[/tex], pentru orice număr real [tex]$a$[/tex].

5p 2. Arătați că [tex]$A(0) \cdot A(2020)=2 A(2020)$/[tex].

5p 3. Demonstrați că [tex]$A(-a) \cdot A(a)=4 I_{2}$[/tex], pentru orice număr real [tex]$a$[/tex], unde [tex]$I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$[/tex].

5p 4. Determinaţi numerele naturale nenule [tex]$m$[/tex] şi [tex]$n$[/tex] pentru care [tex]$A(m) \cdot A(n)=2 A(2)$[/tex].

[tex]$5 \mathbf{p}$[/tex] 5. Determinați numerele reale [tex]$a$[/tex] pentru care [tex]$A\left(a^{2}\right)-2 A(a)+A(-3)=O_{2}$[/tex], unde [tex]$O_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$[/tex].

5p 6. Demonstrați că există o infinitate de perechi de numere reale [tex]$(x, y)$[/tex] pentru care [tex]$A(-3) \cdot\left(\begin{array}{l}x \\ y\end{array}\right)=\left(\begin{array}{c}-2 y \\ 2 x+y\end{array}\right)$[/tex]


Răspuns :

[tex]A(a)=\left(\begin{array}{ll}2 & a \\ 0 & 2\end{array}\right)[/tex]

1)

Aratati ca det(A(1))=4

Inlocuim pe a cu 1 si apoi facem diferenta dintre produsul diagonalelor

[tex]det(A(1))=\left|\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right|=4-0=4[/tex]

2)

Calculam A(0)·A(2020)

[tex]A(0)\cdot A(2020)=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\cdot \left(\begin{array}{ll}2 & 2020 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}4& 4040\\ 0 & 4\end{array}\right)=2A(2020)[/tex]

3)

Calculam A(-a)·A(a)

[tex]A(-a)\cdot A(a)=\left(\begin{array}{ll}2 & -a \\ 0 & 2\end{array}\right)\cdot \left(\begin{array}{ll}2 & a \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}4& 0\\ 0 & 4\end{array}\right)=4I_2[/tex]

4)

Calculam A(m)·A(n) si egalam cu 2A(2)

[tex]A(m)\cdot A(n)=\left(\begin{array}{ll}2 & m \\ 0 & 2\end{array}\right)\cdot \left(\begin{array}{ll}2 &n \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}4 & 2(m+n) \\ 0 & 4\end{array}\right)[/tex]

[tex]\left(\begin{array}{ll}4 & 2(m+n) \\ 0 & 4\end{array}\right)=\left(\begin{array}{ll}4 & 4 \\ 0 & 4\end{array}\right)[/tex]

2(m+n)=4

m+n=2

m=1 si n=1

5)

Calculam A(a²)-2A(a)+A(-3)=O₂

[tex]\left(\begin{array}{ll}2 & a^2 \\ 0 & 2\end{array}\right)-\left(\begin{array}{ll}4& 2a \\ 0 & 4\end{array}\right)+\left(\begin{array}{ll}2 & -3 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\\\\\left(\begin{array}{ll}0 & a^2-2a-3 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)[/tex]

a²-2a-3=0

Δ=b²-4ac

Δ=4+12=16

[tex]a_1=\frac{-b+\sqrt{\Delta} }{2a} =\frac{2+4}{2} =3\\\\a_2=\frac{-b-\sqrt{\Delta} }{2a} =\frac{2-4}{2}=-1[/tex]

6)

[tex]\left(\begin{array}{ll}2 & -3 \\ 0 & 2\end{array}\right)\cdot \left(\begin{array}{ccc}x\\y\\\end{array}\right)= \left(\begin{array}{ccc}-2y\\2x+y\\\end{array}\right)\\\\\left(\begin{array}{ll}2x-3y \\ 2y\end{array}\right)= \left(\begin{array}{ccc}-2y\\2x+y\\\end{array}\right)[/tex]

2x-3y=-2y

2y=2x+y

2x=y⇒exista o infinitate de numere x si y care verifica relatia

Un exercitiu cu calculul determinantului gasesti aici: https://brainly.ro/tema/1009507

#BAC2022

#SPJ4